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1. INTRODUCTION

This report describes work performed under contract NAS-5-3232 dealing
specifically with techniques of enhancement of the radar cross-section of
passive communications sattelites.

The presently deployed Echo I and Echo IIsatellites are simple and
straightforward in concept. As perfectly conducting spheres, they present a
radar echo area of na2 (where a is the sphere radius) independently of the
location of receiver and transmitter; they do not require attitude stabiliza-
tion, and being inflatable structures, can be, with relative ease, deployed.
[The weight, for example, of the Echo II payload is approximately 500 pounds. ]

The limitations of the Echo principal are practical in nature. First,
small departures of the inflated structure from being a perfect sphere have been
shown, theoretically and experimentally to cause variations in the radar cross-
section, as a function of viewing angle. References 1, 2, 3, and 4. These
variations can cause scintillations in the time history of the radar cross-
section values, resulting in possible degradation of communication performance.

Second, the only way to increase the power reflected to the receiver,
using the Echo principal, is to increase the radius of the balloon.

It has therefore been the objective of this study to explore techniques
whereby the power reflected to the receiver may be increased without increasing
the size of the reflector, or, alternatively, the performance of the reflector
may be maintained, reducing the size of the reflector.

The question of how this enhancement can be achieved has been actively
pursued in recent years. A summary of this research has been reported by J.
Kaiser and I. Kay. Reference 5. The effort reported herein consists of
Reference 1: Report No. 0038-2-A-F

2: Report No. 0038-B-F
Reference 3: Report No. 0038-B-S
L: Report No. 0038-7-F
These reports have been prepared for NASA under contract NAS-5-3232.

Reference 5: Radio Science, Journal of Research, NBS/USNC-URSI, Vol. 68D,
No. 4, April 19B%; pp. 515-517.
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theoretical and experimental investigation of enhancement techniques, some of
which have been proposed before, with the objective of exploring in detail
their mechanisms, establishing their limitations, and determining avenues

for future development.
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2. SUMMARY AND ABSTRACT OF THE INVESTIGATION

2.1 Electromagnetic Lenses

Electromagnetic lenses cause the rays to be bent by refractive effects
so as to compress the energy reflected from the lens into a narrow angular
sector. As this sector is narrowed, the gain increases, and in the limiting
case of a focused reflector, the radar cross-section achieves the value hﬂ(%)g,
where A is the geometric cross-sectional area, and N is the wavelength.

The refraction is achieved by utilization of a medium of variable relative
(to free space) permittivity. For a spherically symmetric lens, requiring no
attitude stabilization, two basic principles can be used; in the Eaton-type
lens, entering rays are caused to change their direction solely through the use
of refraction; in the Luneberg, or Siegel-Luneberg type, the lens is coated
with a partially reflecting surface; rays entering the lens are first re-
fracted and then reflected from the rear surface. The optimal coating introduces
a factor of U/27 into the radar cross—section obtained. If the lens is
attitude stabilized, the rear surface can be coated with a perfect conductor.

The analysis of the operation of these lenses is greatly simplified by
use of geometric optics. This type of analysis has been carried out in this
program, and both the technique of lens synthesis have been established and the
gain obtainable for a given bistatic sector has been determined. Experimental
measurements on a Siegel-Luneberg lens have been performed. The methods of
geometric optics do not take into account the effects of polarization. To
illustrate these effects, an analysis of the Eaton lens, using exact electro-

magnetic theory, was performed.

2.2 Lenticular Segments

A lenticular segment is a spherical "cap." (See Figure 2.2-1)
a "’\
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Figure 2.1 .
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Such a cap, of diameter 2R, can be a section of a sphere of radius a, where

a >R, Consequently, the specular radar cross-section of such a cap, naz,

can be made to be much greater than that of a sphere of radius R. Aside from
the obvious need for attitude control of this type of reflector, the principal
electromagnetic problem is the effect of the edge. Previous work, done at
Conductron, analyzing the effect of this edge, has shown that the field contri-
bution of the edge above is of the same order of magnitude as that of the
specular return. Consequently, these two returns have an interference pattern
which causes substantial scintillations in the radar cross-section as a
function of aspect. An experimental program was carried out to display these
scintillations.

2.3 Diffuse Scattering Mechanisms

By placing a large number of discrete scattering centers on the surface
of a sphere, many authors have estimated that the radar cross-section can be
increased rclative to the nominal specular cross-section. An investigation
of this effect was pursued to obtain a quantitative description. The example
chosen was the use of randomly oriented dipoles placed on a sphere. A formula
was obtained which gives the average radar cross-section as a function of
dipole density. This formula is analogous to Lambert scattering from a
roughened surface.

2.4 Surface Waves

The concept of using a mesh-type spherical surface has been suggested as
a means of securing cross-sectional enhancement. This concept has been
investigated, using theoretical analysis of a specific wire-mesh balloon
structure. The results of experiments performed on flat wire mesh plates
resulted in a theory based upon the generation of surface waves on this

structure, causing a prediction of radar cross-section enhancement.
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3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Electromagnetic Lenses

The electromagnetic lens has the principal advantage that it does not
require attitude control. The following table is a listing of the gain available

for such a device as a function of the required bistatic coverage.

TABLE 3.1

o(db > na2) Bistatic Coverage

21.1 10°
15.2 20°
11.8 30°
9.3 1o°
7.5 50°
6 60°
4.8 70°
3.8 80°
3 90°

The angle, in degrees, is the maximum angle between the transmitting and
receiving directions, and the cross-section is the value that can be achieved
for all intermediate angles. As the required bistatic coverage decreases, the
limiting case of a focused lens is approached; for a spherically synthetic

coaged Siegel-Luneberg lens, this cross-section has the limiting Valuec/na2 =
167
27
spherically symetric reflector, and the radius of the sphere of equivalent cross

( %)2. The following table gives the gain for a 10 foot radius focused,

section as a function of frequency,




TABLE 3.2

Radius of Equivalent Sphere

£(MC) o(db > na°) (£t)
500 15 118
1,000 21 L2
2,000 27 1,888
L, 000 33 4,552
8,000 39 18,208

it is apparent that for narrow bistatic coverage, the lens has an extremely
high gain relative to the sphere. As has been defined above, the bistatic

angle is the angle between the receiving and transmitting direction. However,
both Tables3.l and 3.2 are applicable to a more general situation. Suppose that
the angle between the receiving direction and the transmitting direction varies

between a fixed value, 6, and 6 + 6. (See Figure 3.1)

Transmitter

f

/ Figure 3.1 Receiver location zone
Then Table 3.1, with 6 replacing the bistatic angle, continues to apply, and
as 6 - 0, Table 3.2 is applicable. This is particularly applicable to the
case in which it is desired to establish jam-proof and non-interceptible
communication between two fixed ground stations. For a synchronous satellite

such communication could be maintained on a twenty-four hour basis, for a




non-synchronous satellite, the communication would be restricted to those
times at which the satellite was in proper position., Using several such non-
synchronous satellites, the usable transmission time could be increased.

The only fundamental disadvantage of the spherically symmetric lens is
the possible weight penalty. The specific gravity of suitable commercially
available dielectric materials is approximately 1/3. Thus the 10 foot radius
sphericallens to which Table 3.2 is applicable could weigh as much as 8,000
pounds! A 500 pound lens, comparable in weight to Echo, would have a radius
of 1.8 fty; a focused reflector with this diameter would have the same cross-
section as Echo II only for frequencies greater than 9,000 MC. Thus its
usefulness as a passive link would be limited to X-band, and higher, frequencies.

It is recommended that research be continued to develop light weight
refractive media for the construction of dielectric lenses. Logical solutions
to this problem are the use of dipole-loaded foams, printed circuits, and
wire grids. Perhaps of greater potential for the passive satellite applica-
tion is the use of artificial dielectrics of three dimensional wire grid.
Stanford Research Institute (Reference 6) has used these structures in the
design of lens antennas. The principals developed are applicable to the
spherical lens. A possible mode of construction is to utilize concentric
mylar spheres, on which the grids are imprinted. This construction is well
within the state of the art.

3.2 Lenticular Segments

There are two basic problems presented by the use of lenticular segments.
The first, and most formidable, is the development of a stabilization system.
Methods proposed for this system use either a gravity gradient or inertial
orientation sensor., The hard part of the problem is the production of stabi-

lizing forces.

Reference 6: AFCRL 1107, Report 3, AP 19(604)-8059.




The second is the elimination of the effect of the edge on the radar
cross—section pattern. This is a problem of combining a suitable shape for
electromagnetic purposes with mechanical feasibility.

The basic simplicity, from the electromagnetic point of view, of the
lenticular segment make it an attractive device. In this program, the effects
of the edge were studied to a sufficient extent to cause us to recommend
just the mechanical problems.

3.3 Diffuse Scattering Mechanisms

The problem specifically analysed was that of the enhancement produced
by placing, with random orientation, resonant dipoles on the surface of a
sphere. This could, in practice, be achieved by either putting non-conducting
pieces, or slots, on a conducting sphere, or printing conducting dipoles on a

non-conducting sphere. The principal result is that the gain is given by:

Iq
| oo
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where B is the bistatic angle and n is the number of dipoles per A/2 x A/2
area. For n = 2, we see that a 2.3 db gain is obtained, and for n = 3, a
5.8 db gain. As n increases, the formula becomes less reliable, as its
derivation ignores mutual coupling among the dipoles.

The advantages of this technique is that it is achieved with no increase
in weight, and perhaps little increase in manufacturing cost.

There are two disadvantages., First, the value of o obtained is an
expected value, and scintillations are expected. Second, the use of resonant
dipoles implies a very narrow (about 10%) frequency bandwidth. This frequency
bandwidth can be increased by replacing the dipoles by planar spirals, which
are known to be broad bandwidth structures.

It is recommended that further study be carried out to increase the band-

width and the enhancement caused by distributing resonant structures on the
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surface of a sphere. It is anticipated that the use of planar broadband
structures, such as spirals and log-periodic arrays and other devices can be
placed on the surface to achieve optimum enhancement, at no cost in weight.

3.4 Surface Waves

The principal result obtained in this investigation is that for a specific
balloon, constructed of wire mesh, the theoretical enhancement ranged from 2 db,
at 2,000 MC to 8 db at 6,000 MC, The fundamental mechanism responsible for
this effect is the fact that mesh structures, having a non-zero surface
impedance, support surface waves, in contrast to perfectly conducting surfaces,
which have zero surface impedance, The surface impedance is defined as the
ratio between the tangential electric field and the surface currents. A
surface wave is energy which propagates along the surface, with a phase
velocity determined by the surface properties, and which does not radiate.
When the surface wave encounters a discontinuity, such as the termination of
a wire mesh panel, currents are generated in this termination which cause
radiation., The balloon in question was constructed of a large number of these
mesh panels, and the resulting excitation of the edges joining these panels
caused the enhancement.

In as much as wire mesh structures are being considered as materials
for future passive communication satellites, it is recommended that studies
be continued in studying the electromagnetic properties of these structures;
the results obtained already indicate that they do not behave as specular
reflectors, even for mesh sizes which are much smaller than the wavelength;
their enhancement effect is, as in the case of diffuse scatterers, (46 db)
obtained at no cost in weight; however the frequency dependence of the radar
cross—-section pattern and the possible scintillations in the pattern warrant
further investigation, from the point of view of effect on performance as a

communication satellite.
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RECAPITULATION OF RECOMMENDATIONS

To sum up, there have been evaluated a variety of enhancement

mechanisms:

1. The most promising, from the point of view of amount of enhance-
ment which can be obtained, is the dielectric lens. It is felt that

it is possible to synthesize light weight lenses, using artificial
dielectrics to overcome the principal disadvantage of these structures—
their weight,

2. From the point of view of obtaining moderate enhancement (up to 10 db)
at no cost in weight, distributing resonant structures on the balloon
surface and using the surface wave effects of wire mesh structures are
both feasible., It is felt that the principal disadvantage of this
effect--sensitivity to frequency--can be overcome by using broad-
banding techniques, A second disadvantage is the presence of
Scintillations.

3. From the point of view of electromagnetic simplicity, the lenticular
segment is an attractive device for obtaining enhancement, for a fixed
size satellite, comparable to that which can be obtained using lenses;
provided that the mechanical problems of deployment and stabilization

can be overcome, with elimination of electromagnetic edge effects.




S. TECHNICAL DOCUMENTATION

This section contains the technical documentation of the preceding
sections. It consists of memoranda and papers written under thisportion
of NAS-5-3232, arranged and edited to conform to the arrangement of the
preceding sections. For the sake of completeness, some work that has been
performed internally, at Conductron, under company sponsorship, has been
included and identified.

5.1 Electromagnetic Lenses

R.K. Luneberg, in his monograph "Mathematical Theory of Optics"

(194k4) gave a method of synthesizing variable index of refraction structurcs

with prescribed scattering cross section properties. The "Luneberg Lens" is an

example of such a structure. The operation of this lens can be understood
by means of the following argument:
It is well-known that, for normal plane wave incidence, the back-
scattering cross-section of a flat plate, with area A, is MnAg/xg. This
ormula is extremely accurate as long as the smallest linear dimension of the
plate is larger than A. If we think of the phenomenon in terms of geometric
optics, all the rays which strike the plate are in phase, and are reflected

in phase. See Figure5.l.

— S S
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Figure 5.1 Incoming and Reflected Ray Systems for Flat Plate

If the flat plate is replaced by a device which converts the incoming ray
system of Figure5.1to the reflected ray system of Figure®.l, the backscattering

cross-section of such a device will be the same as that of the flat plate.




The Luneberg Lens is such a device. In Figure 5.2, the ray path for a

Luneberg Lens is illustrated.

Figure 5.2 Ray Path for Luneberg Lens
The lens is a sphgre of radius a made of material whose relative dielectric
constant is € - £§ , where r = radial distance from the center of the
sphere. The rea? surface is coated with a perfectly conducting material.
Each incoming ray is refracted so that the ray system is focused and re-
flected as indicated in Figure 5.2. Luneberg showed that the above choice
of ¢ both guaranteed the correct focusing, but also governed phase in such a
fashion as to provide an outgoing ray system equivalent to that in Figure 5.1.

The Luneberg lens, a passive radar cross-section enhancement device is
limited inasmuch as the section of the reflector requires that the lens be
properly oriented with respect to the illuminating radar. To remove this
limitation, K. M. Siegel, introduced the following modification, which is the
patented Siegel-Luneberg lens:

If the perfect conductor used as a reflector on the Luneberg lens is
replaced by a partially reflecting material which is used to coat the entire
sphere, a spherically symmetric reflection system is produced. If the material
has reflectivity R, and transmission coefficient T, then the ray paths of
Figure 5.2 will be maintained but the return power will be multiplied by a

factor TER, corresponding to each ray passing through the material twice and

being reflected once. If T2R is maximized, subject to the constraint

T+ R =1, it is found that T =-§, R = %, and the product T2R has the maximum
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value 4/27. The Siegel-Luneberg lens therefore has, theoretically, a back-

scattering cross-section o, given by

o _ 16w ra”

KaE 27 KE

Such lenses have been built and tested. 1In practice, the effect of the
dependence of R and T for real materials upon angle of incidence causes

a decrease in the gain. Typical measurements for a Siegel-Luneberg lens are
described in Conductron Corporation Report No. CAA-1003-1, "Experimental
Results of the Siegel-Luneberg Reflector" by Robert R. Graham, July 5, 1961.

The lens described above gives the optimal back-scattering cross-section
for a spherically symmetric passive device. It is limited by the fact that
it provides extremely narrow angular coverage. For bistatic coverage, de-
focusing must be employed. The results described above were first reported by
Graham, Siegel, et al ["Optimum Spherically Symmetric Corner Reflectors,
URSI Spring Meeting, 1961]; J.E. Eaton [1953], A.F. Kay [1959], and others
had previously made major contributions to the practical and theoretical
understanding of this subject.

In the remainder of this section, the theoretical basis for the electro-
magnetic lens will be developed as a self-contained subject and the capability
of such lenses for bistatic passive coverage will be explored. We have also
appended several related memoranda.

The starting point, of course, is Maxwell's equations. If in a medium
with relative dielectric constant e, relative permeability pu = 1, an electro-
magnetic wave with time dependence e'mr is propagated, the electric and
magnetic fields, E and H, satisfy the equations

it
(@]

v x E - ioH
(5-1)

1l
(@]

v x H + iwk




We shall seek a solution of these equations of the form

iwd 1
E-e Ez Log. (5-2)
o @

The representation (5-2) is known as the Kline-Luneberg expansion; by
substituting (5-2) into (5-1), arithmetic manipulation shows that it is

necessary that

[ve|< = ¢ (5-3)

‘F o) - (Vioge) * F_ . Vb o
oL/ T OVEOBSS Ik n+1

| rry

(5-4)
-2 (VoV)E ., = i{Vx WxF ]

Equations (5-3) and (5-L4) do not, in themselves determine the electromagnetic

<

field. 1t is known, however; that if complete boundary conditions are given

the solutions to (5-3) and (5-4) are determined, and the series (5-2)-is an
asymptotic representation of the field. From (5-2) and (5-3) it is seen that
the surfaces of constant phase, ® = constant, satisfy the Hamilton-Jacobi

Eiconal Equation,

Ivo|® = 37, (5-5)

where the index of refraction, N, is equal to~/€. Thus, for large values of
w, according to geometric optics, the local optical distance is proportional
to N, and according to the Hamilton-Jacobi variational principle, the path of

a ray between the points Pl and P2 is such as to cause the integral

P2
[ nas (5-6)
Pl




to be a minimum. Suppose that spherical coordinates (n,6,9), are introduced
that N = N(r) depends only upon r, and N(r) = 1 if r > a. (See Figure 5.3)
Then if a ray is incident from the direction 6 = =n, parallel to the z axis,
it will Z

-

s
/]

Figure 5.3 Definition of Spherical Coordinates

not deviate from its ¢ = constant plane, but rather will have a path of the

form 6 = 6(r), and will leave in a direction 6 = 0, (See Figure 5.4)

The distance b is called the impact parameter.

Figure 5.4 Ray Geometry

To determine the function 6 = 6(r), we make use of the fact that for any two

points (rl,el), (r2,62) on the ray path, 6(r) must be such to make the
integral (s):

T2
‘/ﬁ N(r) V& . ( %% )2 dr
1
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a minimum. Applying the calculus of variations to this integral, we obtain:

Y
2
af N(r)\/l+r2(g—i)2dr=
1
2 de

/32 N(r)r Fe

2 de 2
I‘l \/]_+r (E)

d(®6)

r 2 de

2 N(r)r —
[Ts0 a | ()Edrde
rl ?14'1' (a?

=1 =0

for all variationms, 66r which are zero at ry and at -

Therefore
2 de
r N(r) '&

- = constant. (6-7)
2 ,do.2
\/l+r E)

To determine this constant, we observe that for the incoming ray, 6 > g B

r > a, and r sin® = b.

Thus N(r) = 1, rcosé %% + sinf = 0, and o _ _*+b  _ b

dr )
r2 Jl - E? r r2 - b2
r
Substituting this value of %% into (5-7), we find that the constant in (5-7) is

precisely b, the impact parameter. From equation (5-8), we then obtain

& - ﬁENE(r) S (5-8)

Since lim rENg(r) = 0, from equation (5-8), it is seen that as 6 decreases,

the vafﬁg of r will decrease until the smallest value of r, r*, is reached.
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This value of r* is determined by the equation

R CO VAN (5-9)

Because of the obvious symmetry; the rest of the ray path is obtained by
reflecting the path for r > r* about the straight line connecting the origin
to the point of closest approach. If N(r) is either steadily increasing or
steadily decreasing from its value 1 at n = a (as r decreases), the respective
values of * will be less than or greater than b. The respective ray paths
will then be as in Figures 5.5(a) and 5.5(b).

‘\\\ ¥ - °

b -

Figure 5.5(a): N(r) <1

b —

Figure 5.,5(b): N(x) > 1

Figure 5.5 Ray Geometry for N(r) < 1 and N(r) > 1
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In Figure 5.5 it is assumed that no reflecting material is used to coat
the surface of the dielectric.

In Figure 5.5, it is seen that the exit angle, GO, is given by
a
6 =2 sint (=) +2b dr - (5-10)

0
r* rJirgNe(r) - be

QT

The term

b f dr = o(b)

rM r2N2(r) - b2

is seen, from (5-8), to represent the change in 6 as the ray enters and reaches
its minimum value, r¥*. eo, of course, depends upon b. From the geometry of

Figure 5.5(b), it is apparent that as b»0, 6 »n. It is also apparent that as

o)
90 increases, b must decrease.
Now consider the scattered rays contained in the solid angle defined by

e
6y <6 <6, + 29,. Since 8, (b) is a monotonic function, these rays will come

from a circular ring of incoming rays whose impact parameter satisfies

b(eO + Aeo) <b< b(eo).

The area of this ring is approximately

d

2
@ b%(6,)] 28

db _
—2nb(60) @5 (eo) 26, = - [ o

The area on the sphere of radius R in the solid angle is 2nR° sin 6,08 ..
Since, in geometric optics, the conservation of energy is expressed in terms of
the number of rays passing through a given area, we have the bistatic cross-

section 0(6 ) expressed as

brR® [-n 55— d b (6,) 108
7o) = 2nR%s ing an ’
or
dg p? (9 ) = - %; o(eo)sineo.
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Since we have already seen that as Goeﬂ, b0, we have
i
2nb2(90) = fc(e')sine'de' (5-11)
90
which determines the relationship between the impact parameter and the angle
at which the ray leaves. If (60) is prescribed, (5-11) determines b(GO).
Equation (5-10) then is an integral equation which determines N(r).
Following Luneberg, we shall find an explicit solution for equation (5-10).
Let p(r) = xN(r) and 7(r) = log r. Then when r = r*, p = b and when r = a,

P = a. Therefore,

a
dr 1

b a_ﬁl/pz—be

Let t be a parameter O < t < a, and let us consider

o(b) = b dp

f ‘l’gb) db = ﬁ b f dT{E) db
g R Vb2 b V2 o p?

a _ p
tf {‘t[_\/be e /p2 - b° db} e

P:
p=t

5 7()]

Let r = r(t), N(r) = N(t) be a parametric description of r and N(r). Then:

a

r = a exp [_gfﬂ?;&_]

b2 - P

a
t 2 ¥(b)db
N(r) == [ £ ]
r S exp [ = E/" be _ te

5-9
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Equations (5-11) together with equation (5-10), and

¥(b) =5 (x+6,) -sint (2)
. (5-12a)
2nb2(90) = /1 o(6')sine 'de"
%

are adequate to determine N(r) for a prescribed o(6), inasmuch as
equations (5-10) and (5-11) determine ¢ (b) as a function of b, by elimination
of 6.
0
In order to see how equations (5-12) and (5-12a) can be used to synthesize
a lens with a prescribed bistatic cross section, let us seek to construct a

lens for which

B:ta2 p<e <
=0 0<8 <m=x

o(®) (5-13)

Such a lens would give uniform gain over an isotropic reflector for bistatic
angles up to n - B. From the last equation of the set (5-12), and (5-12a), we
find that

6

ba(eo) = &b cos® = B<6y<m
~1k)
P o (5-1
= a G cos B/2 0<6,<B

From equation (5-14) we see that, since bg(eo) < a® for all 9y G has the

maximum value
1
6 = —5— (5-15)
max coszﬁ/e
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TABLE 5.1

Maximum Uniform Gain vs. Bistatic Coverage

G ax (db > na2) Bistatic Angle (n - B)
21.1 10°
15.2 20°
11.8 30°
9.3 4o°
7.5 50°
6.0 60°
L.8 70°
3.8 80°
3.0 90°
Using G = G___, we find then from (5.12a) that

e
~
o
S
1]
oo
pa—

% + cos™t ( g cos B/2) - sint (

)

= cos_l (2 cos B/2) + cos™t (

oo

Putting this value of ®(b) into (5-12), r and N(r) are determined as functions

of the parameter t. Now,

a cos"l b a a
[ - b [ & _ 4
N £ v - ¢ b £ 2 - b2
a €
=[< | bdb >9§=glogg.
N N
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Therefore

a a -1 /b
cos ~ (= cos B/2)
g /1 __Eihl_ db = log % + g /\ a db
T 2 2 T 2 2
t b- -t t b™ -t
Thus, the parametric representations (5-12) become:
: 5 /§ cos” C— cosp/2) .
r=texp [ -=
i t - t2
(5-16)
2 cos7t (— cosp/2)
N(r) = exp [ 2 [ ab]
T 2 2
t b -t

To estimate the integrals in (5-16), we write

o [ ocos™t 2 cosp/2) e 2b J 2
= /\ b = = /‘ cos ——— cos 6{2 - 1} d log [b+|b ]
t be - £ t &
2
s log (a + Va® _ ¢ ) - % cos™t 235 cos® g - 1) log t
a

:\If\)

a
f log [b+|b% - t2 1 ab
t

/a sec 5{2 - b

Therefore, for small values of t,

r ~ tQC

N(n) = 1/Ct, where

a
- (2a)” -B/x exp [- /‘ log 2bdb ]
0 Va sec 8/2 - b
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Thus N(r) ~ L , as r » 0. Hence, for a generalized Eaton lens to give
uniform bisféggc coverage it is necessary that the dielectric constant

have a singularity of the form 1/r as r-0. Consequently, in the practical
construction of such a lens the correct value of N(r) can only be approximated.
If the value of N(r) is correct except for small central sphere of radius a¥,
only rays whose minimal distance, r*, is less than a*. Now, for the relation-

ship (5~9), the corresponding impact parameters, b, satisfy

b% = (r*)% NP(x*) ~ x*/C < a*/C.

ala
~

Therefore, the error in the cross-section < 5
~ C'a

An alternative to a generalized Eaton lens is the generalized Luneberg

lens, in which a reflector is used, and the ray path is as in Figure 5.6.

Figure 5.6 Generalized Luneberg Reflector

For this configuration, equations (5-12) and (5-12a) are unchanged, except for

the first equation in (5-12a), which becomes:

1,b ).

(3

2¥(b) = % (n + 60) - sin”

5-13




For the ideal bistatic coverage, defined by (5-14) and (5-15), the preceding
computations still apply, except that

SR T PR t s
which for small t, becomes
a
2 togea + & [ L log 2b db + log &

0 /ggsec28/2 _be
In this case,

r~C't

N(r) ~ 1/C'.

Thus, N(r) is bounded, so that there is no theoretical reason that the correct
value of N(r) could not be achieved. However, if the lens is not stabilized,
a Siegel-Luneberg coating must be used, which reduces the gains given in

Table 5.1, for small angles, by approximately 8 db.

If, for this configuration,

N2(r)

it is easy to find:

1+2[1-( g )2 1,

2 2
c(6,) = )
0 0 e
[(1+ a]2 cos® f? + (1 - Ot)gsin2 2912
which has a gain of ————};—g at 6, = (back-scattering) and a half power
. 1-

point:

o =02 tan—l [ 1+ 1 ]

0 e YTEZ:_E_

The above discussion has been in terms of geometric optics. For the
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original Luneberg lens, the geometric optics successfully describes the
ray paths. However, calculation of ¢(b) and evaluation of % from (5-10),

gives: 6, = for all b, so that (5-11) is inapplicable to determine the

back-scattering, and other arguments must be applied. The intuitive argu-

ments given at the beginning of this section do, in fact, give the correct

answer. However, for the focused Eaton lens, where N2(r) s

, again

90 = n for all b. However, because there is no reflection, but only refraction,
for back-scattering, the effect of polarization gives zero cross-section.

The following discussion is a discussion of this phenomenon, taking polariza-

tion into account:
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Scattering from the Eaton Lens

The Eaton lens is a particular example of the class of Luneberg lenses.
The general Luneberg lens is a dielectric sphere in which the index of re-
fraction is a function of the radius only. For the Eaton lens in free space,

the index of refraction is given by

where a is the radius of the outer surface, and a geometric optics analysis
based on Fermat's principle shows that each ray of an incident plane electro-
magnetic wave suffers a 180° change in direction as it passes through such a
lens. The spherical symmetry requires the ray to describe a symmetrical path

in a plane passing through the sphere axis which is parallel to the original

ray direction, See Reference T. (See Figure 5.7)

Since the intensity and phase of the incident plane wave are uniform
over the polar plane, the intensity and phase of the refracted wave are
uniform over the same plane, but the effect of the lens on the direction of
polarization of each incident ray is to generate a refracted wave for which
the polarization direction is a function of position on the polar plane of
the lens.

Figure5.7 shows the lens and the system of co-ordinates which will be
adopted. The incident plane wave is assumed to be propagating in the nega-
tive z direction and polarized in the y direction. If, for each ray, we
resolve the electric field vector of the incident wave along the radial
and polar angle directions, we find that the radial component is reversed
in direction by the lens action but the polar angle component is unchanged.
Thus, in the region of the polar plane the refracted wave is given by

) eik(zﬁx

E(p) =E(=-%sin2@g+ $ cos 2 ) o] < a (5-17)

Reference 7: Huynen, J. R.: "Theory and Design of a Class of Luneberg
Lenses', 1958 I.R,E. WESCON Convention Record, Pt. 1,
PP . 219"230o
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Figure 5.7 Ray Path in an Eaton Lens
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where @ is an arbitrary phase constant depending on the electrical path

length through the lens and the particular time origin chosen.

If the wavelength of the incident wave is zero, eq. (5-17 ) is exact.
If the wavelength is small compared with the radius of the lens, the

equation is approximately correct, and we may use it to evaluate the
scattered field.

Now for each cartesian component of the electric field vector of the

refracted wave the free space wave equation is

v 2 @+ PE () =0 (5-18 )

and the corresponding free space Green's function is defined by
2 - 3 2 .7 3 -z
Vv 6 (xr, R) + kK 6(r, R) =-58 (r - R), (5-19)

for which the solution, neglecting the advanced potential terms is

- — 1 eik I—I"-RI
CER - b (5-20)

r-R

We apply Green's theorem to the spherical volume of radius r but
excluding the lens and its projection on the polar plane, as shown by the

broken contour in Figure 5.7 . Then

L/'(GVEEOL - E, ¥0) dv

i

(Gan - EO! VG) +dS,
where dS is directed away from the interior.
Substituting eq. (5-18 ), we obtain directly

] 2 2 ' —
k/- E, (Vv 6 + k6) dv=&/ (GVEa— Eavc) . dsS,
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which, from eq. (5-19 ) and the property of the delta function, reduces to

_ _ _ 3%, () _ _ _
E, (R) = k/{ G (r, R) —_%ﬁ——_ - B, (r) n* V6 (x, R)}- ds (r)
(5-21)

N
where n is the outer normal and the divergence operates on the r co-ordinates,
i.e.
ikr!?

' . 1 e
G:lf' (lk—}'?) —i_',—

where £! is a unit vector in the direction of T! in Figure 5.7 . Now r'! =

T - R, and so eq. (5-21 ) becomes

_ 1kr-R| dE (r) _
E(R) - J o @A

KT
(N
| | =l

L) w2 PO

r - R I r - RI

(5-22)

If the radius of the spherical surface is made arbitrarily large, its
contribution to the integral vanishes, since for arbitrarily large r,

ikr asa(E) _ N E))

and ¥ - R-» 1, and on the surface S = .

= e
E(X)> E(#, o)
The integrand vanishes when these substitutions are made.

1
Over the inner surface only that part coinciding with the polar plane
contributes, since the remainder lies in regions of zero field strength if

it is placed just outside the lens surface. If we restrict our attention to

the determination of the scattered field in the far zone, r = p at z = 0 and

o | << |R| . Thus, substituting in eq. (5- 22) and discarding the vanishingly

small term in — we obtain for the far zone
R

RGN / { % %) 4 ek (p) 1 et Ras(y) (5- 23)
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where K is a unit vector in the direction of R, the three scalar equations
represented by eq. (5-22 ) have been combined as a vector equation, and the

surface of integration is the xy plane within the circle [p| < a.

We denote the co-ordinates of R as (R, ¢0, 90) and of p as (p, @, %),
then

=
il

. + . .
® sin 6, cos ¢0 ¢ sin 6, sin ¢o + 2 cos 8,

R cos P +% psin @

ol
n

A A
n = - 2

ds(e) = p do dg
and E (p) is given by equation (5-18 ).

Substituting in eq. (5-23 ) and collecting terms, we obtain

a V+2x

o’ . .
LnR \/ ‘/ (-%Xsin2 @ + § cos 2¢) e_lkpsul
0 v

6 c¢
o cos (#-8) 2o o,

where the constant exponents, being of no interest, have been omitted.

The substitution ¢ = o + ¢O leads to a restatement of this equation as
o ikEin(l + coseo) Jﬁ J
E(R) = - oy k/ dpp - R sin(2x + 2¢0) + 9 cos(81+2¢0) }
0 el

{ cos(A cos a) - i sin (A cosa)}—dx

where A = k p sin 90.
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The inner integrand may be expanded as
(X cos 2¢0 + ¥ sin 2¢0) {i sin 2 sin (A cos®) - sin 2x cos (A cosx)$. +
+ (- X sin 2¢o + ¥ cos 2¢0) 4 cos 2 cos (A cost) - i cos 2 & sin (A cosx)}»‘

Now sin 20 sin (A costt) and sin 2 @ cos (A cos) are both odd functions of

a and vanish on integration, cos 2 sin (A cosd) is odd about + Z and so

2
it, too, vanishes, and cos 2 cos (A cost) is even about both the origin
and + % and so the limits may be contracted. Thus we obtain
T
a E
o ikEin(l + cos 60) - . . .
E(R) = - o ‘/ dpp 4(-X sin 2¢0 + y cos 2¢0) ‘/ cos 2
0 0
x cos (A cosa) do.
2
But / cos 2 & cos(A cos @) do = - % J2(A),
0
a
- ikE; (1 + cos 60) . . :
*. E(R) = R (=x sin 2¢o + y cos 2¢0)\/ P (k p sin 60) dp.
a 0
o k(1 + cos o)
. |ER) = E;pn R p I (k p sin 90) dp
0
o k(1 + cos 60) 2Jo(ka sin 90) a Jl(ka sin 90) -
or | E(R) = E;p —x ST 3 ..® - I
k™ sin 6, k sin 8, k7sin 6,

Substituting k = %ﬂ, where A is the wavelength, we obtain finally for the

modulus of the scattered electric field strength in the far zone when A < < a.
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a (1L + cos 60) 5 a a 1

{ 1-J (2n<sin6 ) - n < sin 6 J,(2x 5 sin 6 ) - .
a . 2 o] A o] N ol PN o]
2n x R sin 60

E=EL,
in

(5- 2)

Now the differential scattering cross section is defined as the power

scattered per unit solid angle per unit incident power density. In the far

€
zone the scattered power flux is l/EJEQ E2 watts/metreZ, but at a radius of R,
o

one square metre subtends at the origin a solid angle of-l§ steradians, and
R

the incident power flux is 1/2|E2 Ein2 watts/metree.
0

Thus the differential scattering cross section, o, is given by

2

5 R® metre2/steradian.
in

Hence, from eq. (5-24 ),

2
. a .
sin eoJl(E“X sin 60) 3

%

A

a . a
o { 1+ cos 6 1- JO(EnX sin 90) -n =
2

a sin 8 EnE sin @
o A o

This expression is valid only for a > > A and so for the purposes of

evaluation it is necessary to have also a large argument approximation for

the Bessel functions to be used when En% sin 6, is outside the range of the

usual tables, Thus for x large

cos |s - (p + l) z
7 () = 2’ 2|
o) 1

X\ =
7.2

On substituting this in the above expression we obtain, after some

preliminary trigonometric manipulation,
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if tables are used for 2x

a
en —

A

1+ cos 6o a % 1 % a 1
= 1-(<sine6) 41 + }f sin~4(2 ~ sin o -
2:2 sin®e A ° («2 sin 6 ) A o
A (o} A o
B S g ‘
7 T sin 90

I, (x) and Jy (x) are tabulated in Jahnke and Emde for 0 < x < 15.5, hence
a
n
sin eo > 15.5, we have, without significant loss of accuracy,

sin 6, < 15.5 and the approximate expression for

-1 1 1
tan X
7t 2 sin 6 Tt a sin 6
A o} N 0
and 1 + 1 B 1
a . 2
(n S, sin 90)

Thus we have finally the following two expressions for the differential

scattering cross section: -

and,

g
2

~
z

a . a . a .
g ~.{l + cos 6 1- Jo(2ﬁ 5, sin 60) - 5 sin @ J (2= 5 sin 60) }
2~ sin 6 a _.
a o en 3 sin 90
to be used when 2x % sin 6, is large,
2 ok . L :
{ l+cosg, 1- (X sin 90)2 sin —(2 5 sin 6  + 2 % sin 6o) J }
sin 6 a .
o] ZmX sin eo

a

Since the lens behavior for very small 6, is of interest, a series

in ascending powers of 6, is useful, By expressing the Bessel functions

as power series, replacing sin 90 by 90 and cos 90 by unity we obtain

1 : 2 2 2
Eﬁ T “6 (§)6 eoL+ 1- g m (%) O F oo )s
a
(60 in radians).
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EXPERIMENTAL RESULTS OF THE SIEGEL LUNEBERG RETFLECTOR

Introduction

This report describes an experiment performed in the X-band frequency
region to determine the radar cross section of a 6 %" diameter Siegel Luneberg
Reflector., The measured data is presented and compared with theoretical

calculations.

Theory
The Siegel Luneberg Reflector was invented by Professor K. M. Siegel

and is described in patent application No. 26075, This reflector is unique

in that its radar cross section is isotropic in the sense that it is constant
and independent of the incidence angle of the incoming waves. In radar appli-
cations it is convenient to think of this item as an isotropic corner reflector.
It can be used in place of normal corner reflectors or clusters of these with

the advantage that the cross section is truly isotropic.

Physically the Siegel Luneberg Reflector is spherical, The reflector is
composed of a standard Luneberg lens which has been covered with a special
material, In theory the maximum cross section attainable for this reflector
is about 8,3 db below a flat plate whose area is equal to the projected geo~
metric area of the spherical reflector. In practice the cross section will
be somewhat lower than this because of:

1) Dielectric losses in the Luneberg lens.

2) Variations in the dielectric material that cause defocusing.

3) Losses in the outer covering.

Manufacturer!s data for the Luneberg lens show that for items 1 and 2 above,
we may expect a loss on the order of 2 db. Our own previous bench measure-
ments indicate that the loss in the outer covering is about 1 db, Taking
these losses into consideration, we predict the cross section of the Siegel
Luneberg reflector to be 1ll.5 db below that of an equivalent flat plate.

There is one further loss that at present is unknown, This loss results

from not locating the outer covering at the exact focal loci of the central
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lens. The focal loci of the particular lens used was found to be about 0,25
inches outside the lens surface. The technique used to attain this spacing
was not the best but was used for the sake of expediency. This reflector is
the first model that has been constructed. In future models we plan to use

a better technique and eliminate this loss.

Measurements

The cross section measurements were made in the anechoic chamber of The
University of Michigan Radiation Laboratory. A sketch of the equipment layout
is shown in Figure 5.8 . The cross section was determined by comparing the
signal backscattered from the reflector under test with the signal received
when the reflector was replaced with a conducting sphere of equal diameter.
The radar cross section is directly proportional to the amount of power

received as may be seen in the standard radar equation:

2
o PT GT >\.2
R * 3 -
(kx) R
GT = Antenna Gain
PT = Power transmitted
R = Range
A = Wavelength
PR = Power received
¢ = Radar cross section

When substituting a sphere for the reflector in the experiment and

holding all other parameters constant, the following equation: results:

oR

oS

wl'v
=

S
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Measurements were made from 8,5 to 10.0 Kme in increments of 500 mc.
At each frequency, measurements were taken for both the reflector and the
sphere, Each of these was rotated in azimuth through 360° and the received
backscattered signal plotted as a function of angle, The data obtained is
shown in figures 5.9, 10, 11, 12.The spacing between the transmitting antenna
and the reflectors was 20 feet in all cases so as to achieve far zone condi-

tions.

Discussion
If the cross section of the Siegel Luneberg reflector is 11,5 db below
that of an equivalent flat plate, it can be shown that the ratio of the

6 % inch reflector to a 6 % inch conducting sphere is:

R_ 1 lea 190
g 1L.1 M Ay
R
where A\ is in centimeters. Using this equation, the ratio 5
S
was calculated at each frequency and compared in Table with average
experimental values obtained from the rad data.
TABLE 5.2
Frequency UR/U
S
(me) Calculated Measured
8500 11,9 db 11,9 db
9000 12,4 db 11,9 db
9500 12.8 db 11.0 db
10,000 13.3 db 13.4 db
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The maximum deviation between the calculated and measured values is
1,8 db which occurs at 9500 mc. This data was rechecked and found to be
valid, It is not known exactly why the ratio dips slightly in this region

other than it must be a property of the outer coating.

It can be noted from the data that there is a modulation of about
+1 db in the cross section of the reflector. This deviation is somewhat
greater at the higher frequencies. This can best be explained by non-
uniform spacing between the lens and its outer coating. We would expect

this non-uniformity to cause greater errors at the higher frequencies.

The error in our sphere measurements is no greater than +0.4 db as
can be seen by the variation in the cross section of the sphere. This error
is caused by background reflections in the anechoic chamber. When this back-
ground is taken into consideration for the reflector we calculate that the

reflector cross section measurements are in error by no more than +0.,1 db.

Conclusion

In general, the data is in good agreement with the expected results.
In future models we hope to improve the construction tolerances and thus
reduce the modulation that currently exists, The fact that the present
reflector shows good characteristics over the entire X-band region is
encouraging, We will take further measurements over wider frequency bands

to determine if there are limitations.

We have prepared a chart based on this data and two varieties of com-
mercially available Luneberg lenses which plots the radar cross section and
weight of the Siegel Luneberg reflector as a function of diameter for a
wavelength of 3,2 cm, The radar cross section of a conducting sphere is
also plotted, This chart is shown as figure 5.13 and may be used to a good
approximation, Note that for larger reflectors, the gain over perfectly
conducting spheres of the same diameter increased directly with the increase

in physical area.
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Figure 5.14 Characteristics of Siegel-Luneberg Lens
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In the present program,
The 6,5 inch Siegel Luneberg Lens has been measured at several frequencies
at both vertical and horizontal polarizations. The following table shows

the results in db relative to a 6.5 inch diameter calibration sphere:

Frequency Dbts relative to
calibration sphere

970 mc - 7.0

1300 mc - 8,0

3.1 kme + 8,0

3.2 kmec + 7.8

3.3 kme + Te5

34 kme + 8,0

3.5 kme + 6.75

5445 kme + 6,5

550 kme + 75

5.60 kme + 6,0

5¢70 kme + 6,8

5480 kme + 8,2

5490 kme +11,00

5494 kme +11,00

These were insensitive to polarization,

5.2 Lenticular Segments. This section consists of two parts. The first

is a theoretical discussion of the cross-section of a spherical segment.
This was not done on this program, but is included for completeness. The
second is a summary of measurements performed on this program to test this

theory.

Nose~on Cross Section of Spherical Segments

The dominant contributions to the nose-on cross section come from
the specular reflection and from the diffraction by the edge. The specu-
lar reflection gives rise to a cross section independent of wave length.
Edge diffraction from a single straight edge gives rise to a field which
is of lower order by a factor of 1/y k. In this problem however, we have
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a ring of these contributions and the integration around this loop effect-
ively multiplies this byq[E: giving a cross section contribution which is
independent of k. This change in the frequency dependence arises from the
fact that on or near the axis all the edge contributions are in phase whereas
the field at a point from the infinite edge, has only a single point on the
edge, which is in phase. These two contributions are the leading terms of

the asymptotic expansion for large k.,

The specular return can be obtained from physical optics and in the far

zone 1is

ES

;ginc ( _g_) o +ikr - ika
2r

and (524 )

'ﬁs

The edge contribution can be obtained from the diffraction by an edge

as derived by Sommerfeld. If we restrict ourselves to backscattering and to
6 < 7, then the total field is given by
U = UO-Ur+G(r,O)-_l-G(r,Zx) (5- 25)
+

where the upper sign corresponds to the incident electric field along the

edge and the lower sign to the incident magnetic field along the edge, and

U0 = incident field
UY = reflected field
Jilkr + /)
6(r,xx) = diffracted field* =
2 Yox kr  cos @
@ = angle of incidence measured with respect to the tangent to the

surface at the edge.

* This formula doesn't hold for 68 = y, since this corresponds to the
transition region of half %lane solution,




Since we have already taken care of the reflected field, we are inter-
ested now in the diffracted field. The above field is that derived for a
half plane. The present configuration is a sector of a sphere. As indicated
previously we must multiply this by a correction due to the ring of sources
all contributing in phase. We do this in the same manner as Siegel, et.al.
(Reference 5.8 ). Considering first,  the half plane, the field comes
from the edge and thus the scattered field can be represented by an integral
of the form

. ikp
/ v < £(a,z) da (5 26)

(o
]
>l

where Ui is the incident field, p is the distance along the propagation
direction and A is the area of projection of the part of the scatterer

to one side of a plane of constanl plase, and [{G,s) is a function which
represents the properties of the edge. The field at a point r in the x,

y plane for a line source along the z axis gives rise to a scattered field

in the far zone of the form

+ o

H. '
U, = x% l/ f(a,z) e

o2 2
ik Vr + z dz. (5-27)

- 00

This can be evaluated by stationary phase to yield

U, . T
Uy = = AR £, 2 = 0) (5-28)
AY

For the three dimensional problem of a finite edge the integral is

L /
U. . . 2 2
s = X% / f(a, z) Ak yro + 2z dz (5-29)
0
Reference 8: This formula doesn't hold for 6 = 7, since this corresponds

to the transition region of half plane solution.
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which integrates to (for L very small)

fla, z) &L (5-30)

Rl

s
U3D =~
Thus, the Sommerfeld edge answer must be multiplied by the factor

F(O) _ L e -1i T[/Ll- 21

= 5"'-/
NS (5 3t)

for nose-on" incidence.

Now we must consider the wedge to be of length a®(dg)and integrate

vectorially around the edge. The total edge diffracted field is

=d . al eikr 2# =inc 1 ~  Tincy a
E =2_(2—:r7—r Jdﬁl('B'E )B(l_ COSQ)-(D'E ) ?
0
(l = coi a > ‘ (5-32)

where £ is a unit vector parallel to the edge, ? is a unit vector normal to
the edge, and a' is the radius out to the edge. The negative sign between

the two contributions arises out of the change in phase at reflection that

the E field is subject to.

We can take E-¢ = -1 and
» ” ” .
f = -ix cos B - iy sin B
B = 1. sin B - 1y cos B
giving
2n
ity ? il{’r ,
Ed - Eﬂfs—zf u/ dg [- sinp (3, sin B - ﬁy cos B) (1 - Cis y ) -
o)
~ 2] . 1
- cos B (—1X cos B - 1y sin B) (1 + “os a)] (5- 33)
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>4 a’eﬂq %hm
E" = ST oL Cos O (5~ 34)

Thus, the field due to the edge diffraction is of the same order of
magnitude and the same relative sign as the specular field. The total

scattered field can be written as

(5~ 35)

2s *_<a_ ik o al I o 16>
- 2r 2r cos O

where & is the difference in phase between the specular point and the edge

points. If we describe our body by the radius a, and the included half

angle vy, then

at = in

w
0]
~

1l
n
i

(a - a cos )

®
o = 7

rola

cos Q = cos (% - %) = sin y

and this reduces to

2i ka (1 - cos )

s a ikr
bid --2 . 1+e (5 36)
and the nose-on radar cross section is
2 2
o = Uxa” cos” ka (1l-cos 7) (5-37)

Near Nose-On Cross Section

In this section we determine the cross section of the dish configuration
in the near nose-on region. More precisely, we will determine the cross

section in a region such that

1
2 kat

sin § > > (a' = a sin y)

and

6 < 7




This region is characterized by the following:
a. specular reflection is present
b. all of edge in "lit" region

c. the entire edge is not in phase at any angle.

To evaluate the effect of the edge diffraction, we shall again use the
Sommerfeld straight result, However, in this case it is clear that the
multiplying factor used to transform must take on a different form. In the
nose-on case, all edge currents contributors were in phase. In this case,
there will be considerable variation in phase as we integrate around the ring.
For high frequencies, we expect that the major contributions will come from
those points at which the phase is stationary. To see this let us again refer
to the integral expression for the scattered field, namely,

v o= X /'u I a0 m (5 38)

s Ao P ’ '

For the infinite straight edge we again get

s __1i oi(kr + a/4)

ST

Now we consider a ring discontinuity in the x, y plane. The corresponding

£(a, z = 0) (5-39 )

integral is now

s =

3D [ o, ™ £, g1) o (5- 10)

gl

\

S

and

p = -—(af sin 6 cos @' + a' sin 6 sin @ sin ')

The @' integration can be performed by stationary phase, provided 2ka'! sin o

> > 1, For the parameters of interest here, namely, ka 6x(70Gc/s) and
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3¢ (35 Ge/s), this requires 6 > > 4% and 6 > > 6°, Using stationary phase we
find that there are two stationary points, namely, respectively, @' = @ and @!

+ n. The result of the @' integration is then

uS - a U e - % : eikr (o, ¢! ‘{¢ T }>) (5= k1)
3 - A sin 6 3 T ’ Y

where r is the distance from the field point to the stationary point, the upper

sign corresponds to the point #' = ¢ + x and the lower sign to the point where
@' = ¢. Thus, we conclude that the field from the Sommerfeld straight edge
must be multiplied by

P(pr <48 Der 2 (5- 2)
g+ - r sin 6
to give the edge contributions for our problem,

Referring to Figure515 for the case @' # @ we see that the distance
from a plane of constant phase through the origin to the edge is

dl = a cos (y - 6), (543 )

a' = a sin y and the angle made by the ray with the tangent to the surface is
7

al = 35 - (7—9) (5_ )-i-Ll-)

Similarly, from Figure 5.15 , we have

o
L

,=acos (y+ 6) (5- 45)

a2=—’25-(7+9) (5 45)

5-41




/ \x //

T~
-7

IR

Parameters for ¢' = ¢

Z-(r+o)

Figure 5.15

Parameters for @' = ¢ + x
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Using expression ( 5.42) with the Sommerfeld edge results, we have for

the edge diffracted terms

_ ei(kr + 7/4)
s a -21i ka cos(y - 6)
U = e l 1 : 1 i
2r 2n k sin 6

sin(y - 6)

o-2ika cos(y + 91 13 1 l}>(5_u7)
sin (y + 6)
where the upper sign corresponds tof?tangent to edge at ¢ = 8, @ + n (vertical
polarization) and the lower sign corresponds to ﬁ?tangent to edge at ¢ = g, @
+ 5 (horizontal polarization). It is important to remember that this expression
is valid only for 6 < y <-g. To this we add the specular contribution, namely
o i(kr - 2 ka)

U=+ a &

Thus, the cross section is

e fTaF——) (5 48)
where 5, = ka [1 - cos (7 - 6) ]

= ka [1- cos (y +9)]
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Experimental Results

Previously, the static cross section of a spherical segment large compared
with wavelength was determined as a function of the size of the segment, aspect
and polarization. To check on the accuracy of this evaluation a series of
measurements were performed at X band frequencies on scale models. The
measurements were not intended as a systematic precision experiment, but
rather a spot check at key values to demonstrate the validity of the theory.
The experiments do indicate that the magnitudes of these contributions are
correct but there appears to be a phase error of the order of ﬁ.

Models:

The models were made of aluminum 12 thousands of an inch thick and to an
accuracy of approximately 1/10"™ or A/10. The models were made by spinning the
aluninum over a wood mold on a standard wood lathe., This method of fabrication
was chosen purely on a basis of cost. Models made in this manner can be made
quickly and inexpensively, whereas precision models would have been very ex-
pensive. Inaccuracy of the experiment due to model deviations can be expected
to be less than 1/2 db,

Several models were made, each having a different intersecting angle ¥

(see Figu:-5.16A") The height, h, for each model was given by

R
h = 13 N inches

where N had the values 2, 2,5, 3, 3.5, 4.0 and 4.5. Each body is labeled by
its value:of N. The radius of curvature in each case was 3 1/2 inches. Thus
at 10.15 Kmc, kh = Nx so 2x > kh > L.5x and ka = 6x, The angle y for various

N is given in Table 5.3.

+
N V4

2,0 48 1/5°

2.5 54 2/5°

3.0 60°

3.5 65 2/5°

4.0 70 1/2°

ka5 76 2/3°

Measurements:

Measurements were made at X band frequencies between 8,5 kmc and 10,0 Kmc.
5=kl
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Figure 5.16A Model Geometry
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Figure 5.16 Nose-On Cross Section Vs. Frequency When N Has Half Integer Values
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For N = 2.0 and 2.5, measurements were made at several intermediate frequencies
and for the other models, measurements were made at only 9.5 and 10 Kmec.
Measurements were made at horizontal and vertical polarizations, but not all

measurements were made at both polarizations.

Calibrations were made on a 3,5" diameter sphere whose cross section was
read from a 15" x 15" semi log plot of cross section vs. frequency. Reading
errors from the calibration chart in this region are as large as a 1/2 db.
Background levels were kept to a level of about -50 dbM. Better backgrounds
are of course possible, but except for certain nulls, these measurements were

quite adequate.

The far zone criteria of the range being greater than

2

2D
‘>—=h -
R N ft

was satisfied by using a range of 7 1/2 feet throughout.

Results:

1

D o C . . =
Fig. D5~16 gives the nosc-on cross section in M~ vs. frequency for the
spherical segments when N assumed half integer values. Based on the

derived formula, namely

o a° [ 1+ sin 2 ka (1-cosy) ]

the value of ¢ should be o= 5 x lO_l M2 at £ = 10.15 Kme for each value

g

]

of N. Actually there appears to be a phase error of % and the data fits a

curve given by
6= 21 ab [ 1+ sin (2 ka (1 - cos 7y) - % )]

We note that the amplitude at peak values is predicated accurately and there

is small error in other values.

Fig. 5.17 gives a graph of cross section vs. aspect for various frequencies
for the N = 2 1/2 spherical segment. We note the characteristic curve for a
function which has two contributors going in phase, Fig. 5.18 gives the same
curves but for the N = 2,0 spherical segments. We note that at nose-on the

null is down by 27 db. and undoubtedly be lower if finer frequency intervals
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were used. Fige 5.19 gives a comparison of two extreme cases. This proves
that the two contributors are equal in magnitude at nose-on. Off nose-on

the magnitudes are not equal. This is precisely as predicted theoretically.

Theoretically it was also predicted that off nose-on there would be a
polarization dependence to the cross section. Fig. . .5.20 & 5.21 show the effect
of different polarizations. We note that at 9° there is of the order of 4 db
difference between horizontal and vertical polarizations. From Fig. 5.21, we
also observe that at certain situations (particularly deep nulls) there is an
extreme sensitivity to aspect. In particular one notes a 6 db change
over 1° aspect change and a 26 db change over a 9° aspect change. For
situations near peaks (Fig...5.20) we observe only 10 db change over 8°
aspect change at vertical polarization and 6 db change over 8° aspect change

at horizontal polarization.

Conclusions:

The experimental data demonstrates the basic validity of theoretical
analysis in predicting
a) there are two contributions to the cross section at
nose-on; one from the specular contribution, the other from
the ring discontinuity at the edge.
b) these contributions are equal in magnitude.

c) the cross section near nose-on is polarization dependent.

The experiments also demonstrate that there is an error in calculated
theoretical phase, most likely of the order of x/L. A check of the phases
indicate that the phase of the edge term is essentially the same as ob-
tained by both Siegel and Keller (Reference 9 and 10) for the finite cone,
which has a wedge discontinuity of a similar nature. A possibility exists
that the error is essentially algebraic or due to the use of the
Kirchhoff integral.

Usually in scattering problems a phase factor of this type is insigni-
ficant. We note in this case that the phase is very important in that the
value of n (index of refraction of plasma) for which the nulls occur in the
proposed explanation of the experiment is based on the actual values of the
phase. Thus we see that the value of n previously derived in memo 1520-3-M

is wrong. 5=-50
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5e3 Diffuse Scattering Mechanisms

A large number of authors have estimated that by using a large number
of reflectors on a sphere, radar cross section enhancement can be obtained.
In this section we shall discuss two such mechanisms. The first is the
placement of resonant dipoles uniformly, with random orientation on the
surface of the sphere. Although this idea is not new, there does not seem

to be an adequate description of its effect in the literature.

Scattering from a Dipole

In a standard spherical coordinate system, a half wave dipole, operating
in its resonant mode and oriented in the z direction will have a radiation

field, [E, H ] given by

. i kR

zl ., yer A
g_-_;:-z—ﬂF(e)R 6 N

\ . 5149
H—Z_IP(G)elkRA o)
= zx r ¢

where
cos (% cos 8) ‘

F(8) = (5-50)

sin 6

A\ A
R = radial distance, I = maximum current amplitude, and 6 and ¢ are the usual

unit vectors. If an incoming plane wave is incident upon the dipole, with

direction of incidence 60, and polarization P> [(30“65) = 0 ], for large
values of R, the total field is
A3 . ikR
~-iku ev A z] e’ A
-51)
A3 : ikR -5
—,ku_ v A A 21 e A
= e ? =L s
H=e 0" (py x uo) + 5 F(6) R




The energy flux in the radial direction is then

Real part [E x H] 2=
(o) + I (#oD2 + 1 FEL 1508 + (5 x 00 (5-52)
o 1kR(l+u .r) _lkR(l+u ¥ 1]

The conservation of energy dictates that the total energy flux across a

large sphere be zero, or

2 2n.x A A
fﬂg [ (P(G)2 sin 6dede = %% dm ﬂ% / / elkR(l+uO°r)F(e)

JoJ

(5>-53)
ff)ooé\ + $-(§o X GO)] sin odedy }

Integration of (53), and letting Ry 6, gives

IE VT
J ., ) stn eto = £ () )58,

7T

5
o

b F(8) (By+d,) -
- ' 5-5

or
I=3

T )
;/‘z(F(G)) sin 6d6
Therefore, the scattered electric field, using (5-49) and (5-54) is
. ikR
F(8) F(6 ~ et

sc
E-—:-E—
- >
&/ (F(6))“ sin eds
0

=55




Now consider a surface with generic point ?. Let U, and U be the directions
of the incident and scattered field, and let Z be a unit vector on the surface,

lying in the tangent plane. In terms of the preceding discussion,

A AN A A
cos 6 (z'UO) ,» cos 6 = (z.U),
A A AN A A AN A A
6 = (U z) U - 2 6 = (U-z) U-z
0 0 O b) : 7 y

: sin @ - -
sin 8
AN

if q is a unlt vector, q°U = O, the component of the scattered field in the

direction q is:

sc [ cos (n/2 cos 8) cos (/2 cos 6 )
e A : J (p +2)(d-2)
4 k sin 9

\ S
O—lK}.(U+UO) JRAS /. {cos (n/2 cos 9)]

sin @ da ( 5-56)

—

R ¥ o

Vs

Since z is in the tangent plane we can write

A A
= (sin a) e, + (cos «) e

A A
where ey and e, are two fixed orthogonal vectors in the tangent plane. Then

(p,'2) (4-2) = sin® & (&-5,) (¢,+Q)

il

A A
sin « cos « [(e;-p) (e

+

N .
oB) + (BB (8,0

2 A A A
+ cos” « (82'60) (QQ‘Q) ( 5-57)

T (cos n/2 cos 6)
sin 6

Using numerical integration, the quantltyh/ de

can be approximated by 6/5. Then thinking of the dipoles as being uniformly
distributed, but with random orientation, on the surface of a sphere, with
random, but uniform, orientation, the total q component of the scattered

field is
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. ikR . AN
Eq ~ %Ti o a” S f]‘GGf ) HE - () o (5-58)

where p = number of dipoles | unit area, a = radius of sphere, the integral
is extended over the illuminated portion of the sphere, and G(?) is the

random variable:

G(? ) = [cos (x/2 cos G)I [ cos (n/2 cos 64) J 38

sin 29 sin260

If the sphere is located at the center of an (X, Y, Z) coordinate system, let

A a
U =912
o
A A ~
U =sim B X + cos B Z, (5-60)
A 2 A N A .
P, = X , g=cos B X-simp Z t// where

B is the bistatic angle. Then, evaluating the integral CYD by stationary

phase, assuming ka >> 1, we obtain

E,\,:?_[}\E]:a__ G(?)E_J:E(_R
q l2x P cos B/2 s R (5-61)

where ?; is the stationary phase point,

?s = a [simg/2 § + cos B/2 2] (5-62)

The expected value of the cross section is then

2| —— (e @)? (5-63

|
(o0 & (ﬁag) 2 P A
' ) | 1o Gos<B/2

o=57




Recalling (56) we can now find the expected value of ]G(?S) |2 by evaluating
the integral

1 2
E; IG (r I da (5—6@

where G(?S) is given by (58 ). To evaluate (58) we first observe that the

cos(n/2 cos 6)
sin<g

quantity ranges, in value, between % and 1. We shall

therefore replace the integral (64) b

2
p -2n
= ] [p ) (q z)] de, (5-65)

in which E < y < 1. Using (56) the fact that

A A A A A A A AL A
Po = (Po.el) el + (PO' 82) 82 + (Po'n) n,

(V1D
>

A AL A
) 1 *{gqe)) n) n, where

N
NallhN
.
(115N

A
q =

[¢]

A
+ (q -
\10

0]
AM) >

~
[

A
a is the unit normal to the surface, n being given by T /a (€2), and the

definition of p , q in (61), we secure
2 4 L
(|6(x )|} = g p" cos "p/2.

The value of the expected value of ¢ is then

__.2 5 en2 2
(o) = na ’ 125 ‘ g pl+ cos® B/2 (5-66)
Consequently, if n dipoles are present in every > 2 X % rectangle,
g . L 2 _,-15n
€)= 30" cos” o2 |2 =61
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In order for any significant enhancement to occur, it is necessary that

n > 2; If n > 3, mutual coupling between the dipoles will become significant,
making (65) an unreliable estimate. If n=2, the mutual coupling can be
avoided by placing two orthogonal dipoles in each % X % cell.

5.3.1 Analysis of surface waves on a wire mesh balloon.

It has been found that a wire mesh balloon whose mesh size and wire
radius is much less than a wavelength exhibits a radar cross section return
having a gain over a metal sphere of equal radius. Analysis has been per-
formed on a square wire loop in order to explain this phenomena. One may
call this type of analysis a '‘microscopic approach". In this memo an
attempt is made at explaining tiie problem by considering the entire balloon
surface as a collection of randomly distributed square wire meshes and then
looking at the overall surface phenomena associated with it, or in other

words, a '"macroscopic approach'.

Experimental evidence on flat, square wire meshes has indicated that a
surface wave phenomena does seem to exist which is not related to wire loop
behavior and leads one to consider the broad properties of the mesh as
opposed to the individual "loop' phenomena. When this is done it is found
that the wire mesh has two main contributors: a flat plate contributor and a
traveling wave contributor, where the traveling wave is noticed at aspects
near edge on and the flat plate is noticed broadside to the mesh. From this
analysis an extension is made to the case of a large sphere made up of a
collection of wire mesh patches. This type of analysis is conducted assuming
a collection of average mesh patches randomly distributed over the sphere.
The computed results indicate that a gain over a metal sphere can be expected

and the gain is both frequency and wire length dependent,

5.3.2 Flat Plate Analysis

In order to determine the behavior of a wire mesh whose mesh size is
small compared to a wavelength an experiment was conducted on a plane wire

mesh. The mesh was six inches square znd placed on a flat piece of styrafoam.
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The results were then calibrated to a flat metal plate for comparison. The
measurements were made at two frequencies, 3.35 Kmc and 5.42 Kmc; the results
at both horizontal and vertical polarizations at 5,42 Kmc are shown in
Figures 5.22 and 5.23, and the results at just horizontal polarization at
3.35 Kmc is shown in Figure 5.24., The interesting thing about the results

is that at aspects near edge on for horizontal polarization an increase over
a flat plate is apparent for the 5.42 Kmc case but not the 3.35 Kmc case.

In addition, the oscillatory behavior is also different in that the peak
widths are broader than one would normally expect from just a flat plate type
return. This indicates that small flat plates give rise to surface wave
phenomena similar to traveling waves. At vertical polarization the results
for both the flat plate and the wire mesh are identical except for a slight

loss due to energy transmitted through the mesh.,

In order to explain these results we hypothesize a surface wave phenomena
occurring with the expected large flat plate behavior. The obvious surface
wave phenomena is the traveling wave since we can consider each wire (or
groups of wires) as a traveling wave generator. Under this assumption the

average or random phase cross section for a wire mesh would simply be,

<o>

I

Q
+
Q

F.P.  T.W. (5-68)
where 5 by Lt sin 2 6 sin® (kL cos 8)
“F.P. ~ 2 * “ (KL cosB)?
2.2
A A sin 6 . kL G
Srw. = B Q2 {'l - p cosf sin [ 2p gl - p coso) } }
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p is the relative phase velocity
v is the current reflection coefficient

L is the wire length.

In order to determine the validity of Equation (6§)it is necessary to
establish values for the relative phase velocity and the current reflection
coefficient. The wire mesh is coated with a plastic material whose dielectric
constant is greater than one. So we would expect a value for p less than one
and it is found that p ~ .93. The current reflection coefficient y, is a
much more subtle quantity in that at present no analytical methods are
available for determining its value. We would expect, however, that y would
be sensitive to both frequency and mesh size since the number of traveling
wave generators would depend on both these quantities. By fitting the
experimental results to the theoretical calculation we find that y is about

2.1 and that y increases slightly for increasing frequency.

The results obtained using the above information are shown in Figures
5.25 and 5.26. It is seen from these results that the cross section for the
wire mesh is closely matched using random phase addition. The deviation
from the experiment could no doubt be explained had we taken phase into
account, We can therefore conclude that a traveling wave gives rise to the
gain over a large flat plate at aspects near edge on for a horizontally

olarized plane wave,
e
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5.4 Balloon Analysis

The purpose of the preceding section is to establish a theoretical approach
in the hope of explaining the gain found over a metal sphere when the sphere is
composed of wire meshes. The sphere in question consists of a collection of
pentagonal and hexagonal wire mesh patches imbedded in a mylar film. The patch
descriptions are shown in Figure 5.27. In order to obtain a meaningful analysis
for such a sphere some kind of averaging process is necessary to extend the
previous results to cover the case of a wire mesh sphere. Therefore, the
following assumptions are made: The sphere can be thought of as a collection
of square mesh patches randomly distributed over the surface; each patch has
the same probability of being oriented along the incident polarization vector;
the scattered field due to each patch can be added in a random phase fashion.
These assumptions, which are not unreasonable owing to the size of the sphere

and the number of patches, leads us then to the following analysis.

The patches are first analyzed to obtain an average wire length and an
average number of wires per patch., We then compute a weighted average over
the total number of patches used based on how many of cach type of patch arc
on the sphere. This gives us a collection of square patches 27.3" on a side
consisting of 220 wires per patch. The other assumptions now allow us to

write the cross section of the wire mesh sphere as,

ex  w/2
J,J % d
g = +Vo Yo Iy, €05 P 9@
sphere 5
j' dep (5-69)
o
where ¢ is the angle made by each patch with the polarization vector. Equation
(69) when the appropriate values for Gsphere and Op . are inserted becomes,
L[ KL
2 2 n/2 sin’ | &= (1-p cos 8) J
c=nro+: L L L )4 "sin” @ - L 2p L de
2 . A2 2p
™ Q Y o ' KL (1-p cos 6) ]u
2p J (5-70)
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or,
2.2
o= xro 42 Z——%— ( gé )br I

1 Q P

In order to evaluate the integral in Equation (70), we must introduce further

3

approximations, namely kL >> 1, p <1 and that sin “6 does not vary greatly

between 6 = 0 and 6 = cos -1 / % b This is certainly not unreasonable since
4! . oot ’ S S o

most measurements will be between S and C band, and for the sphere p is less

than 1 but greater than 0.9. When this is done we obtain,

L. [(}) 3/2_l+_3_J IITr_s,in?) [%(1—f—§p)}
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Since kL >> 1 we can express the above in terms of a series involving powers

of 1/kL so that to order (l/kL)2 we can write
» o (Ly3/2 i
I~g (37 +0( 2,2 ) G-11)

This gives for the cross section of the balloon,

g~ r2 + 72 H3 L L3A
- 2(3)3/%%  \ of (-72)

We must still determine y and p for the wire mesh patches. If the wire is
imbedded in a material whose dielectric constant is greater than one, then
p will be some number less than one, call it n, where for the flat mesh used
before n ~ .93. Since there will be a curvature associated with each patch
on the sphere then p can be expressed as

p= -5, B L0, 2 <1 6-73)
For a sphere of radius 84" and assuming 7 is again 0.93, p ~ 0.92. It still
remains to find a reasonable y for the wire meshes used on the sphere. 7
will also be effected by the curvature in addition to frequency and mesh size,
However, based upon the flat mesh results we have determined a probable y for
the frequencies considered. We have then multiplied this y by a factor of 0.7

since this seems to be about the value found for 7y using curved bodies..Ref. 1l1.

Further experimentation is necessary to determine a more accurate value of 7.

5.5 Conclusion

Since no further experimental results on the mesh sphere are available
at this time no clear cut conclusions can be drawn. However, the results
obtained do predict a gain over a metal sphere of the order of magnitude found

by past experiments using a similar balloon at the high frequency. Figure 5.28

11 End-Fire Echo Area of Long, Thin Bodies, L. Peters, PCAP, 1/58, Pgs. 132-139
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shows the expected results down to L band where surprisingly the additional
contribution of a traveling wave is found to be less than at C band. Since
this is a first order approach to the problem we cannot expect remarkably
accurate results, however, if further experimentation indicates that this
is the proper approach additional analysis on a more exact basis should be
carried out.

Another important result is that small flat plates give rise to notice-
able surface waves which originate at the edge of the plate and behave in
similar fashion to a traveling wave. Since the coating on the mesh was an
important consideration in determining the results one would expect that a
coated small flat plate would accomplish about the same results. This hypothesis

is certainly worth looking into.
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In the preceding, a theory had been worked out whereby it was postulated
that one would expect a traveling wave phenomenon along with the physical
optics results when observing the radar cross section of a flat wire mesh
patch. The traveling wave cross section associated with a wire was used to
determine the additional contribution. The theory is now extended and the
traveling wave cross section for a flat wire mesh is determined from antenna
theory. The results are then computed and compared to the previous experi-
mental results. It is shown that excellent agreement both qualitatively and
quantitatively are obtained. We again extend the results to consider what
one would expect when observing a balloon entirely made up of wire mesh
patches. However, instead of integrating the traveling wave over the entire
sphere we merely sum the major contribution. This leads to results very
similar to those previously obtained. The major difference is that now, 7,
the voltage (or current) reflection coefficient is a more meaningful entity
since it is entirely dependent upon the patch itself and not on the single
wire concepl as before. We still are left with the dilemma of determining y
for the patch; however, this can be done experimentally on either flat or
curved patches. Preliminary results do indicate that y is proportional to
sin as other experiments {12) have indicated. It is also noted that ¥y will
vary with wavelength and in all likelihood it will vary with plate termination
and relative phase velocity, p. How these other factors will effect y can only
be guessed at but further experiments may lead to more exact determination.

In order to compute the radar cross section of a flat plate which takes
into account the traveling wave we will derive an expression similar to
Peter's | (13) expression for long, thin bodies. The radar cross section
due to the traveling wave on an antenna is given by

2,2

o, .. = L= 6(9,0) (5-7%)

where G(6,9) is the gain function of the antenna at some point other than

maximum. The gain function can be expressed as (14),

Reference 12: E, LeBaron, Conductron Memo D6610-9-M, June 1962

Reference 13: L, Peters, End-Fire Echo Area of Long, Thin Bodies, PGAP,
P.133 - 139, Jan, 1958

Reference 1l4: J. D, Krauss, Antennas, McGraw-Hill Book Co. Inc., N.Y., N.Y.

«27, 1950
p.27, 195 s



U

G(G:CP) =6 T

m
where U is the radiation intensity in the direction (6,9), U, is the maximum
radiation intensity and G is the gain. If we further assume that the antenna

is lossless then

G(6,9) =D %%gfg% (5-75)

where D is the directivity and £(8,9) is the antenna pattern factor.

Substituting (5-75) for G(6,¢) into Equation (5-Tk4) for ¢ gives

- 72>\2 2 fz(e:q))
% .w. = I D f2
(Q:Q)max.

(5-176)

Krauss (15) has shown that for a broadside rectangular array the directivity

is given by

where A is area of the array. He further stated that this directivity is
valid even if the array is not necessarily rectangular. The pattern factor,
f(6,p) is determined by the pattern factor for an individual wire which is
oriented parallel to the electric field. If we assume f(6,9) is the same as

one would find for a wire giving rise to a traveling wave, then for ¢ =0,

. b4 ka
_ ua®yPsin’ ,{ sin 55 (1-p cos 6)] }. 5-T7)

- (1-p cose)h

g
t.w. >\2f2(6)
max

where a is the wire length and p the relative phase velocity.

Equation (5-77) then is the expected return due to traveling wave phenomena

Reference 15: J. D. Krauss, Antennas, McGraw-Hill Book Co. Inc., N.Y., N.Y.
P.121, 1950
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associated with a flat plate. In order to determine the cross section one
observes from a flat plate we must also consider the well known optics return

which is given by

2 . 2
_ LnA in2 Sin (ka cosf)

(5- 78

o s
f.p. x? (ka 0039)2
By adding in random phase this leads to
2 .4k .4 ka
hpa® 7 SiN OSIn Eﬁ(l_p coso) sin2esin2(ka cosé)
S n + 5 (5~179)
X f (e)max (1-p cos@) (ka cos6)

Equation (5-79) was compared to the results obtained experimentally and it
was found that y could be written as y = 7% sing where 7, Was about 0.28
but appeared to vary with wavelength. Since our results are for A = ,056m

and A = ,085m this is certainly not conclusive, The results of experiment

versus theory are shown in Figures 5.22, 23, It is further noted that these

results are for p = ,92 which is about the same as previously indicated.

In order to extend our results to the balloon we again employ an
averaging process of the patches and assume they are all rectangular and
evenly distributed over the sphere, If we further assume a random dis-
tribution of wire orientation then we can write the average cross section

due to the traveling wave over arbitrary linear polarization as

~

(OV)

)
1 Y
g = 2 / Ut.w. cos @dp = 8 c‘c.w. (5_80)
TeWe .
(o]

At this point, instead of integrating over the sphere we must take into

account that there are a finite number of patches on the illuminated side.




If we assume that it will only be necessary to consider those patches which
give rise to the largest return then all we need do is sum over a band of
average rectangular patches whose normal makes the angle with the incident
vector that gives rise to the largest return. The sum of the traveling

wave contributions due to these patches would then be

2
z(emax)] hng 702 sing(emax) (5 81)
N

(%) [ 2nr  co
where r is the sphere radius. In order to determine the cross section of
the sphere we must add the specular return, however, since the panels will
now have a curvature associated with them it would be unrealistic to add the
flat plate return. Hence, as before, we add in random phase the specular

return from the sphere and this gives,

2.3
2 n ra- . 2 . 2
<o>= nr°” + i——i—— "7, cos (6max) sin“(6max) (5~ 82)
A
If in addition ka is large we can approximate € ax by

% (0.861) radians

max
so that,
sin“(6 ) (0.861)° 2
max’, a
Then our expression for <o> becomes
2 22ra2 2
<> _ ar® + S5 o7 (5- 83)

Figure 5.29 is a plot of Equation (5-83) over a small range of A
primarily because we chose 7o = .28 which is what was obtained for flat plate
data near these frequencies. Since we would expect % to vary with frequency,

terminations and coatings, further extensions of Equation (5-83) without more
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substantial information on ¥ 1is unreasonable.
)

The results, as before, indicate a gain over the sphere on the average.
We must also take into account that in reality one would expect a rapid
oscillatory behavior as a function of aspect since there will be many phase
effects from all the contributors. We would not expect large oscillations
since due to the multiplicity of contributors only a very few would be
either in or out of phase whereas most would be randomly phased. The task
of computing the fine structure would be formidable especially at the
frequencies of interest., It is therefore felt that the random phase approach

is the most reasonable approach to this problem.,
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